Checking ontologies using ROBOT report (with an example from the cephalopod ontology)

ROBOT is an OBO Tool for use in ontology development pipelines, supported by the Open Bio Ontologies services project. If you set up your ontology repository using the Ontology Development Kit then you will automatically get a workflow that uses ROBOT to perform reasoning and release processes on your ontology. I have previously covered use of ROBOT for reasoner-based validation.

Starting with v1.20 of ROBOT, we now include a new report command. You can call this command to get a report card, giving a health check on multiple aspects of your ontology.

ROBOT vs Cephalopod

You can read the online documentation here, let’s take a look at it in action. We’ll try a report on the cephalopod ontology.

Like most robot commands, the input can either be a local file (specified with –input or –i) or a URL (specified with –input-iri or -I).
robot report -I

This will return a textual report, broken down into a summary and detail section. Here the summary section starts:

Violations: 236
WARN: 211
INFO: 17

236 violations, bad cephalopod! The violations are broken into 3 categories: ERROR, WARN and INFO. The most serious ones (ERROR) are listed first:

Level Rule Name Subject Property Value
ERROR duplicate_definition head-mantle fusion [CEPH:0000129] definition [IAO:0000115] .
ERROR duplicate_definition tentacle thickness [CEPH:0000261] definition [IAO:0000115] .
ERROR missing_label anatomical entity [UBERON:0001062] label [rdfs:label]
ERROR missing_ontology_description ceph.owl dc11:description
ERROR duplicate_label leucophore [CEPH:0000284] label [rdfs:label] leucophore
ERROR duplicate_label leucophore [CEPH:0001077] label [rdfs:label] leucophore
ERROR missing_ontology_license ceph.owl dc:license
ERROR missing_ontology_title ceph.owl dc11:title

Duplicate definition is considered a serious problem, since every class in an OBO ontology should be unique, and two classes with the same definition indicates the meaning is the same and the classes should be merged.

Similarly, each class should have a label, otherwise a human has no idea what it is. Note in this case the missing label is on an imported class rather than one native to the ontology itself. Duplicate labels are considered serious, since each class in an ontology should have a unique label, so humans can tell them apart.

Some of the violations are due to missing metadata. Here there is no description of the ontology, no license declared and no title. In OBO we strive to have complete metadata for everyone ontology.

After the ERRORs are the WARNings, for example:

WARN annotation_whitespace accessory gland complex [CEPH:0000004] definition [IAO:0000115] The glandular complex in cirrates that forms sperm packets and is a counterpart of the spermatophore-forming complex of other cephalopods.
WARN annotation_whitespace armature of the arms [CEPH:0000018] definition [IAO:0000115] The grappling structures on the oral surfaces the arms and tentacles, including both suckers and hooks.
WARN annotation_whitespace iteroparous [CEPH:0001067] comment [rdfs:comment] Nautiluses are the only cephalopods to present iteroparity

Annotation whitespace means that there is either trailing, leading, or additional internal whitespace (sorry, fans of two spaces after a period) in the value used in an annotation assertion (remember, ROBOT uses OWL terminology, and here “annotation” means a non-logical axiom, typically a piece of textual metadata used by humans). The annotation property is also reported. It helps to memorize a few IAO properties, e.g IAO:0000115 is the property for (text) definition.

These kinds of issues are not usually harmful, but they can confound some lexical operations.

Currently WARN includes a few false positives, e.g.

WARN multiple_asserted_superclasses anal flap [CEPH:0000009] rdfs:subClassOf valve [UBERON:0003978]
WARN multiple_asserted_superclasses anal flap [CEPH:0000009] rdfs:subClassOf ectoderm-derived structure [UBERON:0004121]

It should be stressed that there is NOTHING WRONG with multiple inheritance in an ontology. It is good engineering practice to assert at most one in the editors version and infer the rest, but as far as what the end-user sees it is all the same. In future this check should only apply to the editors version and not to the released or post-reasoned version.

WARN missing_definition transverse row of suckers [CEPH:0000306] definition [IAO:0000115]
WARN missing_definition cephalopod sperm receptacle [CEPH:0001017] definition [IAO:0000115]
WARN missing_definition inner sucker ring [CEPH:0001020] definition [IAO:0000115]
WARN missing_definition circumoral appendage bud [CEPH:0000003] definition [IAO:0000115]

This one is a more serious problem. One of the OBO principles is that classes should have definitions for human users. Without definitions, we must rely on the label or placement in the graph to intuit meaning, and this is often unreliable.

While text definitions are incredibly important, we only count this as a WARNing because currently even well curated ontologies frequently miss some definitions, having every class defined is a high bar.

Following the warnings are the INFOs, for example

INFO lowercase_definition anal photophore [CEPH:0000304] definition [IAO:0000115] photophore at side of anus

This is warning us that the class for anal photophore has a definition that is all lowercase. This is not particularly serious. However, having inconsistent lexical rules in an ontology can look unprofessional, and in OBO we have the convention that all text definitions have the first word capitalized. Many ontologies such as GO end with a period.

Use in ontology pipelines

The report command can be used in ontology pipelines to “fail fast” if the report produces ERRORs. The default behavior is to exit with a non-zero return code (standard in unix for a command that fails).

This can be configured – for example, if you wish to create a report for informative purposes, but you are not yet up to the standard that ROBOT imposes. You can also set ROBOT to be more strict by failing if a single warning is found, like this:

robot report --input cephalopod.owl \
  --fail-on WARN \
  --output report.tsv

Specify “fail-on none” if you never want the report command to fail, no matter what it finds.

As the output is TSV it’s easy to load into Excel or Google sheets (if you like that sort of thing), to transform to a Wiki table, etc. You can also get the report as YAML.

How does this work?

Each type of check in the report is implemented as a SPARQL query. This makes the framework very declarative, transparent, and easy to extend. Many ontology editors who do not code can read SPARQL queries, which makes it easier to figure out which each check is doing.

You can see the queries in the ROBOT repository.

Who decides on the rules?

Hold on, you may be thinking. Who gave these ROBOT people the right to decide what counts as an error? Maybe you have duplicate definitions and you think that is just fine.

This should not prevent you from using ROBOT, as everything is customizable. You can create your own profile where duplicate definitions are not errors.

However, our overall goal is to come up with a set of checks that are agreed across the OBO community. We have made initial decisions based on our combined experience with diverse ontologies, but we want community feedback. Please give us feedback on the ROBOT GitHub issue tracker!

Ultimately we plan to use the default profile to automatically evaluate ontologies within the OBO library, and provide assistance to reviewers of ontologies.


The report command and accompanying queries were written by Becky Tauber. Thanks also to James Overton, HyeongSik Kim, and members of the OBO community who provided specifications, directions, and feedback. In particular many checks came from the set developed originally for the Gene Ontology. ROBOT is supported by the OBO services grant to Bjorn Peters and myself.


Debugging Ontologies using OWL Reasoning. Part 2: Unintentional Entailed Equivalence

This is part in a series on pragmatic techniques for debugging ontologies. This follows from part 1, which covered the basics of debugging using disjointness axioms using Protege and ROBOT.
In the previous part I outlined basic reasoner-based debugging using Protege and ROBOT. The goal was to detect and debug incoherent ontologies.

One potential problem that can arise is the inference of equivalence between two classes, where the equivalence is unintentional. The following example ontology from the previous post illustrates this:

ObjectProperty: part_of
Class: PNS
Class: Nerve SubClassOf: part_of some PNS
Class: PeripheralNerve EquivalentTo: Nerve and part_of some PNS

In this case PeripheralNerve and Nerve are entailed to be mutually equivalent. You can see this in Protege, as the two classes are grouped together with an equivalence symbol linking them:

Screen Shot 2018-09-03 at 5.19.47 PM

As the explanation shows, the two classes are equivalent because (1) PNs are defined as any nerve in the PNS, and (2) nerve is asserted to be in the PNS.

We assume here that this is not the intent of the ontology developer; we assume they created distinct classes with distinct names as they believe them to be distinct. (Note that some ontologies such as SWEET employ equivalence axioms to denote two distinct terms that mean the same thing, but for this article we assume OBO-style ontology development).

When the ontology developer sees inferences like this, they will likely want to take some corrective action:

  • Under one scenario, the inference reveals to the ontology developer that in fact nerve and peripheral nerve are the same concept, and thus the two classes should be merged, with the label from one being retained as the synonym of the other.
  • Under the other scenario, the ontology developer realizes the concept they have been calling ‘Nerve’ encompasses more general neuron projection bundles found in the CNS; here they may decide to rename the concept (e.g. neuron projection bundle) and to eliminate or broaden the part_of axiom.

So far so good. But the challenge here is that an ontology with entailed equivalencies between pairs of classes is formally coherent: all classes are satisfiable, and there are no inconsistencies. It will not be caught by a pipeline that detects incoherencies such as unsatisfiable classes. This means you may end up accidentally releasing an ontology that has potentially serious biological problems. It also means we can’t use the same technique described in part 1 to make a debug module.

Formally we can state this as there being no unique class assumption in OWL. By creating two classes, c1 and c2, you are not saying that there is something that differentiates these, even if it is your intention that they are different.

Within the OBO ecosystem we generally strive to avoid equivalent named classes (principle of orthogonality). There are known cases where equivalent classes join two ontologies (for example, GO cell and CL cell), in general when we find additional entailed pairs of equivalent classes not originally asserted, it’s a problem. I would hypothesize this is frequently true of non-OBO ontologies too.

Detecting unintended equivalencies with ROBOT

For the reasons stated above, ROBOT has configurable behavior for when it encounters equivalent classes. This can be controlled via the –equivalent-classes-allowed (shorthand: “-e”) option on the reason command. There are 3 options here:

  • none: any entailed equivalence axiom between two named classes will result in an error being thrown
  • all: permit all equivalence axioms, entailed or asserted
  • asserted-only: permit entailed equivalence axioms only if they match an asserted equivalence axiom, otherwise throw an error

If you are unsure of what to do it’s always a good idea to start stringent and pass ‘none’. If it turns out you need to maintain asserted equivalencies (for example, the GO/CL ‘cell’ case), then you can switch to ‘asserted-only’.

The ‘all’ option is generally too permissive for most OBO ontologies. However, for some use cases this may be selected. For example, if your ontology imports multiple non-orthogonal ontologies plus bridging axioms and you are using reasoning to find new equivalence mappings.

For example, on our peripheral nerve ontology, if we run

robot reason -e asserted-only -r elk -i pn.omn

We will get:

ERROR org.obolibrary.robot.ReasonOperation - Only equivalent classes that have been asserted are allowed. Inferred equivalencies are forbidden.
ERROR org.obolibrary.robot.ReasonOperation - Equivalence: <; == <;

ROBOT will also exit with a non-zero exist code, ensuring that your release pipeline fails fast, preventing accidental release of broken ontologies.

Debugging false equivalence

This satisfies the requirement that potentially false equivalence can be detected, but how does the ontology developer debug this?

A typical Standard Operating Procedure might be:

  • IF robot fails with unsatisfiable classes
    • Open ontology in Protege and switch on Elk
    • Go to Inferred Classification
    • Navigate to Nothing
    • For each class under Nothing
      • Select the “?” to get explanations
  • IF robot fails with equivalence class pairs
    • Open ontology in Protege and switch on Elk
    • For each class reported by ROBOT
      • Navigate to class
      • Observe the inferred equivalence axiom (in yellow) and select ?

There are two problems with this SOP, one pragmatic and the other a matter of taste.

The pragmatic issue is that there is a Protege explanation workbench bug that sometimes renders Protege unable to show explanations for equivalence axioms in reasoners such as Elk (see this ticket). This is fairly serious for large ontologies (although for our simple example or for midsize ontologies use of HermiT may be perfectly feasible).

But even in the case where this bug is fixed or circumvented, the SOP above is suboptimal in my opinion. One reason is that it is simply more complicated: in contrast to the SOP for dealing with incoherent classes, it’s necessary to look at reports coming from outside Protege, perform additional seach and lookup. The more fundamental reason is the fact that the ontology is formally coherent even though it is defying my expectations to follow the unique class assumption. It is more elegant if we can directly encode my unique class assumption, and have the ontology be entailed to be incoherent when this is violated. That way we don’t have to bolt on additional SOP instructions or additional ad-hoc programmatic operations.

And crucially, it means the same ‘logic core dump’ operation described in the previous post can be used in exactly the same way.

Approach: SubClassOf means ProperSubClassOf

My approach here is to make explicit the assumption: every time an ontology developer asserts a SubClassOf axiom, they actually mean ProperSubClassOf.

To see exactly what this means, it helps to think in terms of Venn diagrams (Venn diagrams are my go-to strategy for explaining even the basics of OWL semantics). The OWL2 direct semantics are set-theoretic, with every class interpreted as a set, so this is a valid approach. When drawing Venn diagrams, sets are circles, and one circle being enclosed by another denotes subsetting. If circles overlap, this indicates set overlap, and if no overlap is shown the sets are assumed disjoint (have no members in common).

Let’s look at what happens when an ontology developer makes a SubClassOf link between PN and N. They may believe they are saying something like this:

Screen Shot 2018-09-03 at 5.12.16 PM

i.e. implicitly indicating that there are some nerves that are not peripheral nerves.

But in fact the OWL SubClassOf operator is interpreted set-theoretically as subset-or-equal-to (i.e. ) which can be visually depicted as:

Screen Shot 2018-09-03 at 5.13.03 PM

In this case our ontology developer wants to exclude the latter as a possibility (even if we end up with a model in which these two are equivalent, the ontology developer needs to arise at this conclusion by having the incoherencies in their own internal model revealed).

To make this explicit, there needs to be an additional class declared that (1) is disjoint from PN and (2) is a subtype of Nerve. We can think of this as a ProperSubClassOf axiom, which can be depicted visually as:

Screen Shot 2018-09-03 at 5.13.44 PM

If we encode this on our test ontology:

ObjectProperty: part_of
Class: PNS
Class: Nerve SubClassOf: part_of some PNS
Class: PeripheralNerve EquivalentTo: Nerve and part_of some PNS
Class: OtherNerve SubClassOf: Nerve DisjointWith: PeripheralNerve
Class: OtherNerve SubClassOf: Nerve DisjointWith: PeripheralNerve

We can see that the ontology is inferred to be incoherent. There is no need for an additional post-hoc check: the generic incoherence detection mechanism of ROBOT does not need any special behavior, and the ontology editor sees all problematic classes in red, and can navigate to all problems by looking under owl:Nothing:

Screen Shot 2018-09-03 at 5.14.43 PM

Of course, we don’t want to manually assert this all the time, and litter our ontology with dreaded “OtherFoo” classes. If we can make the assumption that all asserted SubClassOfs are intended to be ProperSubClassOfs, then we can just do this procedurally as part of the ontology validation pipeline.

One way to do this is to inject a sibling for every class-parent pair and assert that the siblings are disjoint.

The following SPARQL will generate the disjoint siblings (if you don’t know SPARQL don’t worry, this can all be hidden for you):

prefix xsd: <;
prefix rdfs: <;
prefix owl: <;
?sibClass a owl:Class ;
owl:disjointWith ?c ;
rdfs:subClassOf ?p ;
rdfs:label ?sibLabel
?c rdfs:subClassOf ?p .
FILTER NOT EXISTS { ?c owl:deprecated "true"^^xsd:boolean }
?c rdfs:label ?clabel
BIND(concat("DISJOINT-SIB-OF ", ?clabel) AS ?sibLabel)
BIND (UUID() as ?sibClass)

Note that we exclude deprecated/obsolete classes. The generated disjoint siblings are given a random UUID, and the label DISJOINT-SIB-OF X. You could also opt for the simpler “Other X” as in the above example, it doesn’t matter, only the ontology developer sees this, and only when debugging.

This can be encoded in a workflow, such that the axioms are injected as part of a test procedure. You likely do not want these axioms to leak out into the release version and confuse people.

Future versions of ROBOT may include a convenience function for doing this, but fow now you can do this in your Makefile:

SRC = pn.omn
disjoint_sibs.owl: $(SRC)
robot relax -i $< query --format ttl -c construct-disjoint-siblings.sparql $@
test.owl: $(SRC) disjoint_sibs.owl
robot merge -i $< -i disjoint_sibs.owl -o $@

Debugging Ontologies using OWL Reasoning. Part 1: Basics and Disjoint Classes axioms

This is the first part in a series on pragmatic techniques for debugging ontologies. See also part 2

All software developers are familiar with the concept of debugging, a process for finding faults in a program. The term ‘bug’ has been used in engineering since the 19th century, and was used by Grace Hopper to describe a literal bug gumming up the works of the Mark II computer. Since then, debugging and debugging tools have become ubiquitous in computing, and the modern software developer is fortunate enough to have a large array of tools and techniques at their disposal. These include unit tests, assertions and interactive debuggers.

original bug
The original bug

Ontology development has many parallels with software development, so it’s reasonable to assume that debugging techniques from software can be carried over to ontologies. I’ve previously written about use of continuous integration in ontology development, and it is now standard to use Travis to check pull requests on ontologies. Of course, there are important differences between software and ontology development. Unlike typical computer programs, ontologies are not executed, so the concept of an interactive debugger stepping through an execution sequence doesn’t quite translate to ontologies. However, there are still a wealth of tooling options for ontology developers, many of which are under-used.

There is a great deal of excellent academic material on the topic of ontology debugging; see for example the 2013 and 2014 proceedings of the excellently named Workshop on Debugging Ontologies and Ontology Mappings (WoDOOM), or the seminal Debugging OWL Ontologies. However, many ontology developers may not be aware of some of the more basic ‘blue collar’ techniques in use for ontology debugging.

Using OWL Reasoning and disjointness axioms to debug ontologies

In my own experience one of the most effective means of finding problems in ontologies is through the use of OWL reasoning. Reasoning is frequently used for automated classification, and this is supported in tools such as ROBOT through the reason command. In addition to classification, reasoning can also be used to debug an ontology, usually by inferring if the ontology is incoherent. The term ‘incoherent’ isn’t a value judgment here; it’s a technical term for an ontology that is either inconsistent or contains unsatisfiable classes, as described in this article by Robert Stevens, Uli Sattler and Phillip Lord.

A reasoner will not find bugs without some help from you, the ontology developer.

Screen Shot 2018-08-02 at 5.22.05 PM

You have to impart some of your own knowledge of the domain into the ontology in order for incoherency to be detected. This is usually done by adding axioms that constrain the space of what is possible. The ontogenesis article has a nice example using red blood cells and the ‘only’ construct. I will give another example using the DisjointClasses axiom type; in my experience, working on large inter-related ontologies disjointness axioms are one of the most effective ways of finding bugs (and has the added advantage of being within the profile of OWL understood by Elk).

Let’s take the following example, a slice of an anatomical ontology dealing with cranial nerves. The underlying challenge here is the fact that the second cranial nerve (the optic nerve) is not in fact a nerve as it is part of the central nervous system (CNS), whereas true nerves as part of the peripheral nervous system (PNS). This seeming inconsistency has plagued different anatomy ontologies.

Ontology: <>
Prefix: : <>
ObjectProperty: part_of
Class: CNS
Class: PNS
Class: StructureOfPNS EquivalentTo: part_of some PNS
Class: StructureOfCNS EquivalentTo: part_of some CNS
DisjointClasses: StructureOfPNS, StructureOfCNS
Class: Nerve SubClassOf: part_of some PNS
Class: CranialNerve SubClassOf: Nerve
Class: CranialNerveII SubClassOf: CranialNerve, part_of some CNS


You may have noted this example uses slightly artificial classes of the form “Structure of X”. These are not strictly necessary, we’ll return to this when we discuss Generic Class Inclusion (GCI) axioms in a future part.

If we load this into Protege, switch on the reasoner, we will see that CranialNerveII shows up red, indicating it is unsatisfiable, rendering the ontology incoherent. We can easily find all unsatisfiable classes under the ‘Nothing’ builtin class on the inferred hierarchy view. Clicking on the ‘?’ button will make Protege show an explanation, such as the following:

Screen Shot 2018-08-02 at 5.28.59 PM

This shows all the axioms that lead to the conclusion that CranialNerveII is unsatisfiable. At least one of these axioms must be wrong (for example, the assumption that all cranial nerves are nerves may be terminologically justified, but could be wrong here; or perhaps it is the assumption that CN II is actually a cranial nerve; or we may simply want to relax the constraint and allow spatial overlap between peripheral and central nervous system parts). The ontology developer can then set about fixing the ontology until it is coherent.

Detecting incoherencies as part of a workflow

Protege provides a nice way of finding ontology incoherencies, and of debugging them by examining explanations. However, it is still possible to accidentally release an incoherent ontology, since the ontology editor is not compelled to check for unsatisfiabilities in Protege prior to saving. It may even be possible for an incoherency to be inadvertently introduced through changes to an upstream dependency, for example, by rebuilding an import module.

Luckily, if you are using ROBOT to manage your release process, then it should be all but impossible for you to accidentally release an incoherent ontology. This is because the robot reason command will throw an error if the ontology is incoherent. If you are using robot as part of a Makefile-based workflow (as configured by the ontology starter kit) then this will block progression to the next step, as ROBOT returns with a non-zero exit code when performing a reasoner operation on an incoherent ontology. Similarly, if you are using Travis-CI to vet pull requests or check the current ontology state, then the travis build will automatically fail if an incoherency is encountered.


ROBOT reason flow diagram. Exiting with system code 0 indicates success, non-zero failure.

Running robot reason on our example ontology yields:

$ robot reason -r ELK -i cranial.omn
ERROR org.obolibrary.robot.ReasonerHelper - There are 1 unsatisfiable classes in the ontology.
ERROR org.obolibrary.robot.ReasonerHelper -     unsatisfiable:

Generating debug modules – incoherent SLME

Large ontologies can strain the limits of the laptop computers usually used to develop ontologies. It can be useful to make something analogous to a ‘core dump’ in software debugging — a standalone minimal component that can be used to reproduce the bug. This is a module extract (using a normal technique like SLME) seeded by all unsatisfiable classes (there may be multiple). This provides sufficient axioms to generate all explanations, plus additional context.

I use the term ‘unsatisfiable module’ for this artefact. This can be done using the robot reason command with the “–debug-unsatisfiable” option.

In our Makefiles we often have a target like this:

debug.owl: my-ont.owl
        robot reason -i  $< -r ELK -D $@

If the ontology is incoherent then “make debug.owl” will make a small-ish standalone file that can be easily shared and quickly loaded in Protege for debugging. The ontology will be self-contained with no imports – however, if the axioms come from different ontologies in an import chain, then each axiom will be annotated with the source ontology, making it easier for you to track down the problematic import. This can be very useful for large ontologies with multiple dependencies, where there may be different versions of the same ontology in different import chains. 

Coming up

The next article will deal with the case of detecting unwanted equivalence axioms in ontologies, and future articles in the series will deal with practical tips on how best to use disjointness axioms and other constraints in your ontologies.

Carry on reading: Part 2, Unintentional Entailed Equivalence

Further Reading


Thanks to Nico Matentzoglu for comments on a draft of this post.

Creating an ontology project, an update

  • In a previous post, I recommended some standard ways of managing the various portions of an ontology project using a version control system like GitHub.

Since writing that post, I’ve written a new utility that makes this task even easier. With the ontology-starter-kit you can generate all your project files and get set up for creating your first release in minutes. This script takes into account some changes since the original post two years ago:

  • Travis-CI has become the de-facto standard continuous integration system for performing unit tests on any project managed in GitHub (for more on CI see this post). The starter-kit will give you a default travis setup.
  • Managing your metadata and PURLs on the OBO Library has changed to a GitHub-based system:
  • ROBOT has emerged as a simpler way of managing many aspects of a release process, particularly managing your external imports

Getting started

To get started, clone or download cmungall/ontology-starter-kit

Currently, you will need:

  • perl
  • make
  • git (command line client)

For best results, you should also download owltools, oort and robot (in the future we’ll have a more unified system)

You can obtain all these by running the install script:


This should be run from within the ontology-starter-kit directory

Then, from within that directory, you can seed your ontology:

./  -d ro -d uberon -u obophenotype -t cnidaria-ontology cnido


This assumes that you are building some kind of extension to uberon, using the relation ontology (OBO Library ontology IDs must be used here), that you will be placing this in the organization  and that the repo name in obophenotype/cnidaria-ontology, and that IDs will be of the form CNIDA:nnnnnnn

After running, the repository will be created in the target/cnidaria-ontology folder, relative to where you are. You can move this out to somewhere more convenient.

The script is chatty, and it informs of you how it is copying the template files from the template directory into the target directory. It will create your initial source setup, including a makefile, and then it will use that makefile to create an initial release, going so far as to init the git repo, add and commit files (unless overridden). It will not go as far as to create a repo for you on github, but it provides explicit instructions on what you should do next:

EXECUTING: git status
# On branch master
nothing to commit, working directory clean
0. Examine target/cnidaria-ontology and check it meets your expectations. If not blow it away and start again
1. Go to:
2. The owner MUST be obophenotype. The Repository name MUST be cnidaria-ontology
3. Do not initialize with a README (you already have one)
4. Click Create
5. See the section under '…or push an existing repository from the command line'
cd target/cnidaria-ontology
git remote add origin
git push -u origin master

Note also that it also generates a metadata directory for you, with .md and .yml files you can use for your project on obolibrary (of course, you need to request your ontology ID space first, but you can go ahead and make a pull request with these files).

Future development

The overall system may no longer be necessary in the future, if we get a complete turnkey ontology release system with capabilities similar to analogous tools in software development such as maven.

For now, the Makefile approach is most flexible, and is widely understood by many software developers, but a long standing obstacle has been the difficulty in setting up the Makefile for a new project. The starter kit provides a band-aid here.

If required, it should be possible to set up alternate templates for different styles of project layouts. Pull requests on the starter-kit repository are welcome!